
DESIGN DOCUMENT

BETHANY DUNFIELD MARCO BRITO MATTHEW FOURNIER
RYAN BOTTRIELL ZARA TOOTH

IMD 4901A - SENIOR PROJECT
SUPERVISOR - DR. ALI ARYA

LAST MODIFIED - APR. 16 2015

EXECUTIVE SUMMARY
Another End is a procedurally-generated, story-driven adventure game built for the desktop web
browser. The world of Another End has five major non-player characters: Entity, the all powerful
master of the world, and the four other glyphs, who are trying to usurp Entity and achieve
dominance for themselves.

The two core player actions within Another End are exploration, and interaction. Players can explore
an infinite procedurally generated world, with many different plants, objects, and areas to discover.
Player interaction takes the form of using a variety of powers, which can have both local and world-
changing effects. Four of the five characters have their own set of powers which are made available
to the player through their choices and actions within the game. Players can use their powers to
not only affect the physical world, such as by destroying a tree, but also to affect the influence
levels of the glyphs, and help bring them either into or out of balance.

Another End features both a procedurally generated world and story. The environment is generated
through a combination of random factors, including the fertility of the area, its temperature, and
the “civilization” density of the area. Another End’s narrative is created through procedural linking
of “story nodes”. Each node has a set of prerequisites which must be met, either through current
game state variables, or environmental conditions.

Another End is intended to be played with the mouse and keyboard, but has an experimental
version implementing a virtual reality display using the Oculus Rift and natural interaction using the
Leap Motion controller.

The game makes use of a two-tiered architecture, encompassing both a local game client, and
a remote web server. The local client, based in the desktop web browser, handles game engine
functionality and rendering to the screen. The procedural generation has been offloaded to the
remote server, running node.js, in order to save client resources. Objects and story nodes are
stored within an ElasticSearch index, and are used by the server to generate content appropriate to
the current game state.

The visual style of the game is heavily geometric and “clean”, but not without depth and texture.
A variety of colour palettes have been developed for the game. The in-game heads up display, and
menu systems have been designed to match this visual style. The only exceptions to this style
are the in-game hands which appear when players are using the Leap Motion Controller. Music for
Another End is being composed by Daniel Campoli, a student in the music department at Carleton
University.

The game was completed on April 10, 2015, when it was shown at the 2015 IMD Senior Project
fair.

TABLE OF CONTENTS
1 INTRODUCTION							 4
2 SPECIFICATIONS							 5
2.1 GAMEPLAY							 5
2.2 VISUAL STYLE							 5
3 SCHEDULE								 6
3.1 SUMMARY OF COMPLETED WORK				 6
3.2 MILESTONE SCHEDULE						 7
4 TECHNICAL REQUIREMENTS					 10
4.1 HARDWARE							 10
4.2 SOFTWARE							 10
5 RISK ANALYSIS							 11
5.1 RISK FACTORS							 11
5.2 PREVENTIVE ACTIONS						 12
5.3 CORRECTIVE ACTIONS						 13
6 PROJECT MANAGEMENT						 14
6.1 TEAM STRUCTURE						 14
6.2 VERSION CONTROL, TEAM MANAGEMENT TOOLS		 15
6.3 TEAM COMMUNICATIONS					 15
6.4 QUALITY CONTROL						 16
7 FURTHER READING						 17
8 REFERENCES							 18

1 GAME DESIGN
Another End is a procedurally generated adventure game, where the player’s actions and choices
change their experience. This section will discuss the complete game design for Another End.

4

1.1 WORLD DESIGN

1.1.1 BACKSTORY

This section summarizes the backstory for Another End. A more detailed explanation of the story
and lore influences can be found in Appendix A.

Originally all that existed in the world was Entity, an all powerful being with the ability to create,
destroy, protect, and perform great illusions. Entity grew bored with the world of nothingness. After
building a tower to live in, Entity then created four glyphs to span out and help build the world. To
create the four glyphs Entity divided its powers and assigned a power to each glyph. Architect was
assigned to add new objects to the world, Protector was assigned to insure the longevity of the
world, Illusionist was assigned to create space and time, and Destroyer was assigned to remove old
objects from the world.

The leadup to the game story arc involves Destroyer becoming dissatisfied with its role, as there
were no objects to be removed from the new world. Destroyer confronts Entity, and is reassured
that in time, Destroyer will have purpose. However, Destroyer lacks the patience to wait, and
begins destroying objects in the world, sparking a conflict among the glyphs. This conflict escalates
through a series of events leading to the glyphs separating, and locking themselves away in their
own towers. Without the power of the Glyphs, the world begins to decay.

The player appears as an unknown presence within the world. The glyphs, aside from Entity, have
fallen dormant. Entity is initially wary of the new arrival, but soon comes to realize he can use the
player’s power to lock the Glyphs. It is up to the player to decide whether to take sides with Entity
or one or more of the four other glyphs.

4

1.1.2 WORLD LAYOUT

The world in which Another End takes place will be made up of trees, plants, rocks, and a variety
of ruins. In this world will also be “ruins” which are old buildings and random man made objects
that the player can discover and explore. Different areas of land, or “biomes”, will be procedurally
defined. Biomes are marked by differences in temperature, fertility, terrain height, civilization etc.
These values are further explained in section 4.3.2 Environment Generator.

In the world, the five non-player characters (NPCs) will each have their own tower. Entity’s tower
is in the middle of the world surrounded by the four glyphs’ towers. The glyphs’ towers are quite
a distance away and approximately in each cardinal direction. These towers will be randomly placed
each time the game starts and the world will be procedurally generated between them. See Figure 1
below for a diagram of the World Layout.

Figure 1: World Layout, Grey area is procedural world, dotted circle is area in
which one glyph tower will be generated.

GAME DESIGN | WORLD DESIGN

4

1.1.3 PROCEDURAL GENERATION

One of the core goals of Another End is to ensure that every experience a player has with the
game is unique. To accomplish this, many aspects of Another End are procedurally generated to
various degrees. The game’s story is generated by procedurally linking story nodes. These nodes will
be chosen based on the player’s progression and choices throughout the game. The environment of
the game is also procedurally generated. The objects which populate the world are a mix between
pre-modelled and procedurally assembled composites of pre-modelled meshes. Object placement is
procedural-based on the environmental variables at any given point. Further detail of the procedural
generation process can be found in Section 4.3.

1.2 GAMEPLAY

1.2.1 MECHANICS

Players are free to explore the infinite world of Another End. They are given access to a variety
of special powers which allow them to manipulate and interact with the world. These powers are
used to complete story events in the world, which affects the influence of each glyph in the world.
Higher levels of glyph influence gives the player access to stronger powers related to that Glyph.
Altering the influence levels of each glyph in the world is intended to become the players
overarching goal. With this in mind, the gameplay revolves around using the given powers to
accomplish this. The powers and energy system are described in detail in section 1.2.3.

1.2.2 CORE GAME LOOP

The core game loop, seen in Figure 2, is a simple loop which provides an easy to understand set
of gameplay tasks for the player. One of the goals of the story and world generation systems is to
ensure that the player is provided with new and interesting opportunities to apply this core loop.
The loop has three distinct stages: explore world, use powers, and alter glyph influences. Although
other mechanics exist outside of this loop, it is understood that the story and gameplay will
inevitably return to this iterative loop.

GAME DESIGN | WORLD DESIGN

EXPLORE
WORLD

Use
Powers

Alter Glyph
influences

Figure 2: Core Game Loop

4

1.2.3 POWER SYSTEM

Throughout playing the game there are sixteen different powers that the player can unlock. The
powers are divided by level and by associated glyph. A full list of powers can be found in Appendix
B.

The level of the powers are rated from 1 to 4, level 1 being the lowest (base power) and level 4
being highest. The four powers in level 1 are all available from the start of the game, with each
power being associated with one of the four Glyphs. Upon using a power, a short ‘cooldown’ is
experienced, and powers cannot be used until the completion of this cooldown.

To unlock additional powers the player must visit towers in the game which are inhabited by one of
the four glyphs.While visiting the glyph’s tower, the player is presented with the choice to either
lock the glyph into Entity, or set it free. If players choose to reconnect the glyph to entity, the
glyph’s influence is locked at the balanced level, and the player is given permanent access to the
level 2 power associated with that Glyph, with no opportunity to unlock any further powers for that
character. If the glyph is set free, the player will immediately unlock the level 2 power associated
with the Glyph, and be given the opportunity to unlock the higher level powers. level 3 and 4
powers are unlocked by raising that Glyph’s influence in the world.

1.3 STORY DESIGN

1.3.1 STORY SYSTEM OVERVIEW

The narrative of Another End is procedurally generated. The story of the game is made up of
procedurally linked “nodes”. Each node can be thought of as a story event. Rather than design
a linear story, the entire “story world” of Another End has been designed, to allow for a more
diverse experience [1]. Nodes make use of game state variables, including characters and their
current influence levels, nearby environmental objects or biomes, and powers currently available to
the player. Figure 3 shows a graphical representation of what data is stored within a story node.

GAME DESIGN | GAMEPLAY

4

1.4 PLAYER MINDSET

While the player is inside the world of Another End, they will experience a state of curiosity and
uncertainty. The game’s infinite world and open-ended story will give players the feeling of curiosity
which motivates them to explore and continue their experience within the world. Players will be
emotionally invested in the characters, and will experience tension through their conflicts. By
involving players within the relationships of Entity and the Glyphs, the player will gain a sense of
control or influence on the game world. However, the conflicting choices presented to them by the
characters within the game will cause players to be unsure of their actions.

Figure 3: Story node database structure

1.3.2 CORE STORY ARC

The core story leading up to Another End is discussed in section 1.1.1. Though the story
experienced by the player is procedural, there is a core story world that has been defined. Players
are dropped into the world with little direction, however characters can provide motivation for the
player to move forward. Entity, for example, asks the player to “lock-in” Glyphs upon reaching
their tower. The Glyphs themselves, on the other hand, directly ask the player to visit their tower
and set them free. Upon reaching the glyph’s tower, players may choose to either reconnect them
or set them free. This choice, repeated for each of the glyphs, creates the core story arc of the
game. The game ends, should players choose to reconnect all four of the glyphs back to Entity,
with the conclusion of that story line or the complete dominance of another glyph.

GAME DESIGN | STORY DESIGN

2 INTERFACE AND CONTROLS
2.1 MENU SYSTEM

Figure 4 shows a flowchart for the menu system for Another End. Figure 5 and 6 shows the final
visual designs of the menu system. In addition to usual menu items such as settings and a link to
the external game website, there are three unique sections to Another End’s pause menu. First,
the map page shows what is loaded around the players position, giving insight into the procedural
terrain generation system. This map graphic is also displayed as the initial world loads in real time.
Similarly, the story page provides a navigable UI in which the player can explore his/her unique story
timeline and re-visit completed story nodes. Finally, the powers page provides descriptions and icons
for each of the 16 powers available in the game.

5

Figure 4: Flow chart of Another End’s menu systems

5

Figure 6: Start Menu Design

Figure 5: Pause Menu Design

INTERFACE AND CONTROLS | MENU DESIGN

2.2 IN-GAME HEADS-UP DISPLAY
In the game there will be a Heads-Up Display (HUD) that shows the player key information. On the
HUD there will be a horizontal compass bar indicating the direction of the glyph towers and active
story nodes, an area displaying the influence levels of each glyph, and an area showing information
on the players available powers and energy. More information can be found in section 5.3.2.

5

Figure 7: Screenshot of Another End’s Heads-Up Display

2.3 CONTROLS
Another End is mainly designed for the mouse and keyboard.

The game has an experimental input mode which makes use of the Oculus Rift VR and a Leap
Motion. The Oculus Rift VR is the main viewing area as well as the input for moving the view around
in the world. To limit head movement the player only needs to look 60 degrees either way and
the world will continue to pan. The Leap motion will be the primary input for the game, using easy
gestures to navigate the world and perform tasks. See Table 1 below for gestures and their actions
in the game. Another End will support using the VR Mount for the Oculus Rift in order to use both
technologies together [2].

INTERFACE AND CONTROLS

5

Figure 7: Screenshot of Another End’s Heads-Up Display

GESTURE ACTION IMAGE

Fist

To move around in the world
player makes a fist and moves
it forward, back, right or left
(this action works in conjunc-
tion with the Oculus HMD for
full motion control).

Palm Out

The player puts their palm out
(like the stop gesture) for pow-
er use. For powers that involve
aiming the player closes their
fingers together to aim and
then opens to shoot.

Open Palm Up

To access the powers menu
player turns one palm facing
upward.

INTERFACE AND CONTROLS | CONTROLS

3 SYSTEM REQUIREMENTS
3.1 CLIENT

Browser with WebGL support
- Internet Explorer 11+
- Chrome 33+
- Firefox 37+
- Safari 8+
- Opera 26+

Hardware
- 1GB dedicated video memory
- Core i5 CPU or equivalent
- 4GB RAM

Internet Connection
- Broadband or better

For Oculus VR use, Another End requires a VR-enabled Chromium build and an Oculus Rift HMD.
For Leap Motion controller use, Another end requires a Leap Motion Controller and Leap runtime
software. For use together, Another End requires the Leap Motion VR Mount for the Oculus Rift.

6

3.2 SERVER
Unix System running Ubuntu 14.0+

Software
- Node.js v0.11.14-pre or higher with Socket.io v0.9.16 or higher
- ElasticSearch v1.4.2

Hardware
- 1 GB RAM
- 20 GB SSD
- 2.0-3.0 GHz CPU

4 DEVELOPMENT
4.1 SUMMARY

The game architecture consists of a two-tiered system. The game itself runs on a local client.
To save client resources, procedural generation is offloaded to a remote web-server. Many game
objects and story nodes have properties stored in a database which is hosted on the same web
server.

4.2 CLIENT
4.2.1 ENGINE

Another End is built in a custom engine designed specifically to handle procedurally generated
content. The engine is written in HTML, CSS and JavaScript to be served as a web page through a
web browser. The following is a breakdown of the responsibilities of the engine:

SERVER INTERFACE

The engine manages a connection to the server-side of our game and requests, receives and
properly processes data moving between them. This includes terrain and object data as well as
story information and game state information.

WORLD AND SCENE MANAGEMENT

Due to the infinite nature of our procedural world, the engine must organize the data that it
receives from the server and then load and unload content as the player moves around. The engine
organizes the world into an infinite grid, and keeps the squares around the player loaded at all
times while unloading squares that move to far away. The engine also loads farther grid squares to
lower level detail to save on GPU memory.

POWERS

The engine also manages the powers system that allows the player to interact with the world. It
must deal with throwing, creating and resolving the effects of powers on the environment. Much of
the functionality of the power system, such as power selection, is closely related to the interface
and HUD systems.

10

STORY

Although the server defines story nodes and their relationships, the engine must receive the nodes
from the server and manage them properly on the client side. Story nodes need to be tracked,
and the engine must respond when the nodes completion conditions are met. The engine is also
consistently updating the story server with information about the game state so that the server
can properly resolve and generate new story nodes.

PARTICLES

The game’s particle system brings life into the static world of Another End. The particle system,
which is used for the glyph “essences” within the world, is based on boids functionality and is
managed by the engine. The engine creates and updates the particle system with information about
story nodes and important objects.

INTERFACE & HUD

The menu system and in-game HUD are also managed by the engine. In order to support VR
displays, all menus and HUD components are displayed on billboards within the 3D environment. The
engine manages the placement and visibility of all of these components as well as the interaction
with them. The engine must also calculate mouse positions and project that into the 3D world so
that the user can properly use the menu systems.

INPUT / OUTPUT DEVICES

The engine is also responsible for interfacing with the Oculus VR and Leap Motion controller. The
Oculus system requires special rendering and also provides head movement data which is used
in the game to allow the player to look around. The Leap Motion controller provides skeletal
information for the players hands. The engine uses this data to render the characters hands in the
game world as well as for interfacing with menus and HUD.

4.2.2 RENDERING & SHADERS

Another End is rendered in WebGL through Three.js, an open-source JavaScript library which
simplifies WebGL rendering in the browser [3]. WebGL allows us to take full advantage of the
graphics hardware on the client machine by giving direct access. This greatly increases the rendering
capabilities in the web browser.

10

DEVELOPMENT | CLIENT

Another End uses several custom shaders to render properly in WebGL. The shaders are written in
GLSL and implemented through Three.js:

MAIN OBJECT SHADER

The main object shader is used for all geometry that makes up the generated world in After End.
This shader renders objects using vertex colors, and also incorporates all lights in the scene. It is
also responsible for rendering the fog. The fog is rendered based on a distance sphere around the
camera. However, because the fog only exists up to a certain height, the shader also accounts for
occlusion while looking up, out of the fog as well as looking over and into the fog from above.

SKYBOX SHADER

The skybox shader is used only to render the geometry of the game’s skybox. The skybox edges
sit at a fixed distance away from the player and are rendered using a gradient from bottom to top.
The skybox shader calculates the proper color of the gradient at any height. Because the skybox
is a cube, but the sky should render as a sphere, the skybox shader also corrects for this while
rendering the gradient, creating the illusion of a perfect sphere. Using the same methods as the
main object shader, the skybox shader also renders the world’s fog onto the skybox.

POST SHADER

The post shader is a pixel / fragment shader that provides post processing effects to the game’s
render. After the geometry and fog are rendered, the post shader applies ‘filters’ to the rendered
image to create the final look for the game world. The post shader uses a depth pass and beauty
pass in it’s calculations. This shader deals mostly with color correction and tinting but also provides
functionality for fading the screen to and from black.

The rendering of Another End follows a distinct process. First, a depth pass is rendered to a
separate render target using a special Three.js depth material. The skybox is then rendered with its
shader as the background. The geometry is rendered on top of the skybox using the main scene
shader. Following this the post processing is applied to the rendered world and then the interface
and HUD are rendered over top. This process is visualized below in Figure 8.

10

DEVELOPMENT | CLIENT

10

Figure 8: Another End Rendering Pipeline

DEVELOPMENT | CLIENT

4.3 SERVER

10

The game server runs on node.js, and communicates to the client using websockets and the Socket.
IO library. The server handles both communication with the client and the procedural generation
of the game. To that end, there are three major classes. Generation is accomplished by both the
Story Generator and the Environment Generator. Communication between the two generators is
accomplished by passing events between the two class objects. The main Server class acts as
the communicator between the two generators and the client, sending and receiving client events
as they happen, and ensuring client events reach the proper generator. Figure 9 illustrates the
relationship of the server-side game files. Game objects used for generation, including story nodes
and environmental objects, are stored within a Database hosted on the server.

Figure 9: Server-side file relationships for Another End

DEVELOPMENT

4.3.1 STORY GENERATOR

The Story Generator handles the flow of the game’s story as perceived by the player. This involves
assignment, monitoring, and resolution of story nodes as the player progresses. The Generator
decides when new story nodes are necessary within the game. When a new node is required, the
generator evaluates the current game state, including player progression, character influence levels,
and the position of the player and the associated environmental variables. Story nodes that match
the current game state are selected from the database, and from those results a node is selected.
If no nodes are found, the generator will either wait to try again, or attempt to generate another
node for a different area of the game world.

Within the story node, the event(s) that must occur to resolve the node are stored. When a node
is loaded by the generator, it activates the event listener(s) associated with these events, and / or
sends a message to the client so that the appropriate client-side event listener(s) can be activated.
Upon receiving the event(s), the generator can resolve the node as per its definition. This may
include changing game state variables such as character influence levels or player power availability.
After the node has been resolved, the cycle repeats until the player either reaches an end node or
leaves the game.

4.3.2 ENVIRONMENT GENERATOR

The Environment Generator handles creating / constructing the physical world of the game. This
involves creating the actual terrain mesh, which is passed to the client, and determining which
objects will fill the world. Unlike the terrain, objects are not passed from the server to the client,
rather the server tells the client which object to load and where to load it.

Environmental Characteristics are defined in two ways. For the purposes of this document, “Nature”
in terms of Environment will refer to the procedurally generated aspects of the environment.
Environmental characteristics in Another End are either defined by “Nature”, or by what Glyph’s
territory they occur in. Table 2 gives a summary of the various environmental variables and what
they define.

10

DEVELOPMENT | SERVER

10

Defined By Characteristic Description

Nature

Terrain Height
Physical Y coordinate of the terrain. Terrain
Height contributes to the temperature variable
(higher heights have lower temperature).

Fertility

Defines the amount of plants growing in a giv-
en area. Higher fertility gives more and larger
plants such as trees. Lower fertility gives fewer
plants and more rocks.

Temperature Defines the type of plants that can grow.

Civilization
Defines the density of ruins and civilized
(non-organic) objects.

Glyph Territory

Colour
Defines the colour palette to be used in an
area, with smooth transitions between areas.

Colour
Defines the general colour and tint of objects
within the biome, overriding the “Nature” colour
variable.

Table 2: Summary of Environment Generation variables and their effects.

Naturally defined variables are created through Perlin noise maps. The combination of factors
that these noise maps represent gives the final environmental state and appearance at any given
position. Environmental objects stored in the database include the acceptable range of the various
environmental factors that must exist for them to be valid. For example, a type of tree may only
be valid when Fertility is between 0.6 and 1.0, and temperature is between 0.3 and 0.8. When the
Environment Generator decides to create an object, it will query the database to find objects whose
properties match the environment at that location.

For Terrain generation, the Terrain Height noise map has a direct connection to the physical
Y-coordinate height of the vertices of the ground plane. The other factors, such as temperature and
fertility, are used to generate the vertex colour for that specific area.

The second aspect of Environment Generation is procedurally assembling objects. Hierarchically
modelled assets have multiple entries within the database with the parameters as to how they may
be assembled. For example, a tree trunk database entry will specify which branch and leaf types
may be used when assembling the tree. The server will use these parameters to determine which
files should be loaded, and the appropriate arrangement to create the entire object.

DEVELOPMENT | SERVER

4.3.3 DATABASE

The game’s database is powered by ElasticSearch, a “NoSQL” document store with a robust
search algorithm [4]. ElasticSearch indexes JSON documents, and organizes them by type. When
comparing to MySQL, the “index” of a document corresponds to its “Database”, and the “type”
of a document corresponds to its “Table”. This allows for increased flexibility when storing objects
for Another End, as ElasticSearch easily allows for Arrays and Objects to be stored within an Object
Document. Additionally, as both the client and server of the game use Javascript, the JSON format
of ElasticSearch documents is ideal.

Communication between the Server and the Database is done by using the ElasticSearch node.js
module to create a client instance on the server. This client can make a variety of queries, and has
the functionality to receive callbacks and errors.

ElasticSearch can only be accessed through code-based clients. Therefore, to facilitate database
management, an in-house developed GUI is used for performing database functions. The GUI
has functionality such as the ability to view Database Documents, the ability to edit or delete
Documents, and the Ability to create new Documents and Document types.

10

DEVELOPMENT | SERVER

5 VISUAL DESIGN
5.1 STYLE OVERVIEW

The visual style for Another End is very geometric and the feel of the game will be a surreal world.
The game will not attempt to be overly realistic, having trees and plants abstracted in both design
and colour. The visual aesthetics of the game will be simple, but still containing depth and visual
appeal.

The world will be brought to life through both vibrant colour palettes, and the addition of grain
for texture. The world is split into five regions each having distinct colours associated to them
depending on the character inhabiting the region. Each region will feature slightly different
characteristics, which reflect which character’s domain the area represents. For example, the sky
and the ground within each region will be coloured based on the representative colour of the
dominant character in that region.
	
The Glyphs themselves take their inspiration from their respective spirit animals. The in-game
representations of the Glyphs will be heavily geometricized, with solid fills for each of their bodies
and faces.

11

5.2 WORLD STYLE
5.2.1 GLYPHS

Entity, and each glyph, each have a distinct colour, basic geometric shape, 3D structure, and spirit
symbol. Table 3 summarizes these characteristics. Figure 10 shows the characteristics of the
Glyphs.

CHARACTER BASIC SHAPE 3D STRUCTURE COLOUR SPIRIT

Entity Circle Sphere White God
Destroyer Triangle Pyramid Red Wolverine
Protector Square Cube Purple Turtle
Illusionist Rhombus Diamond Orange Raven
Architect Hexagon Hexagonal Prism Green Spider

Table 3: Character Characteristic Summary

VISUAL DESIGN | WORLD STYLE

12

Figure 10: Glyph Designs

DESTROYER

PROTECTOR

ARCHITECT

ILLUSIONIST

ENTITY

5.2.2 GLYPH ESSENCES

Throughout the world, smaller representations of the glyphs can be found and interacted with by
the player. These are known as “essences”, and behave as floating shapes. Individual essences
mimic the original glyph’s basic geometric shape and 3D structure. The colour of the original
glyph is also shared with its essence counterparts. The essences are the main point of interaction
between the player and the story.

5.2.3 TOWERS

Each character within the game has a unique tower which acts as its home and center of power.
Every tower has a unique aesthetic, which is designed around the power, personality, and visual
appearance of the matching glyph. The below figures illustrate the tower designs for each of the
in-game characters.

12

Figure 11: Glyph Towers

VISUAL DESIGN | WORLD STYLE

5.2.4 ENVIRONMENT

The style of Another End’s environment and the objects which populate it is very geometric and
abstract. Objects such as bushes and trees are tessellated but still recognizable. Objects within the
world will have distinct colouring which does not necessarily correlate with its appearance in the real
world. For example, the leaves of a tree may be blue instead of green. Figure 12 shows an example
of the environmental appearance of the world. Appendix C has all the different environment models.

12

TREE ROCK

LEAVES CRYSTALS

Figure 12: Environment models

VISUAL DESIGN | WORLD STYLE

5.2.4 POWERS

Every power in the game will have a unique visual design along with a 2D icon to represent it.
Figure 13, shows the power icons in Another End. As an example, on of the Destroyer powers has
red triangles falling from the sky to mimic a rain of fire. The specific colour of the glyph will be
associated with it. All of the powers have a different look.

Another End has been designed to be played with both the Leap Motion and Oculus Rift VR. When
using the Leap Motion, a set of virtual hand models will be represented in the game as the player’s
hands.

12

DESTROYER’S POWERS PROTECTOR’S POWERS

ARCHITECT’S POWERS ILLUSIONIST’S POWERS

Figure 13: 2D Power Icons

VISUAL DESIGN | WORLD STYLE

5.3 INTERFACE DESIGN
5.3.1 MENU STYLE

Another End’s menu design is simple and clean for easy navigation. The menus contain options
on the left side, the content in the middle, and a legend in the bottom right corner. Most of the
elements are white content on a black background. The selected or key content is highlighted with
the colour blue. The background of the initial start menu is different than the in-game pause menu.
In the start menu the background shows the world generating as the player waits for the game
to load. The pause menu has the a dark screen with the game still visible as the player moves
through the menu. Figure 14 shows Another End’s menus.

13

VISUAL DESIGN

13

Figure 14: Pause Menu Design

VISUAL DESIGN | INTERFACE DESIGN

5.3.1 HEADS-UP DISPLAY DESIGN

The Heads-Up Display (HUD) system has a similar design to the menu system. Figure 15 shows the
HUD for Another End. The HUD is made up of 4 parts: Selected Powers, Character Influence Levels,
Aiming Reticle, and navigational compass. The Selected Power, influence meters, and compass all
have a transparent geometric background to help distinguish them from the game screen with
white and the colours of the glyphs to represent different information to the player. The reticle will
change its shape to represent which glyph’s power set is currently selected by the user.

13

Figure 15: HUD Design

VISUAL DESIGN | INTERFACE DESIGN

SELECTED POWER SECTION

The Selected Powers section of the HUD, seen in Figure 16, contains information about the power
system. This section contains the power currently available to the user. The icon background colour
will change depending on which glyph power set the player has equipped. The selected power name
is displayed beside this icon. The bar under the power name represents the cool down time between
each instance that the player can use the power.

CHARACTER INFLUENCE METERS

This section of the HUD contains information about the current influence levels of the in-game
characters. Four meters are visible, each corresponding to a different glyph. The meters have one
line, indicating the balanced level. The influence bars travel between -1 to +1 as the player explores
through Another End. The red line signifies that the glyph is still locked and the player must travel
to its tower to lock or unlock it.

13

Figure 16: HUD Design

Figure 17: HUD Design

VISUAL DESIGN | INTERFACE DESIGN

5.4 COLOUR SCHEME
The colour schemes in Another End break up the colour wheel into 6 sections, red, orange, yellow,
green, blue, and purple. There are separate colour schemes are each of the Glyph areas in Another
End. The palettes are then broken up into three land colours and five objects colours that are
analogous to the section of the colour wheel selected. The sky colours are broken down into two
options. Each option has a sky gradient and a fog colour that can be chosen by the procedural
system.

Figure 18 shows the Destroyer colour palette and the sky palette for the Destroyer area. Other
colour palettes for the game can be viewed in Appendix D.

13

Figure 18: Colour Wheel and Destroyer Land and Sky Palettes

VISUAL DESIGN

5.5 ASSET CUSTOMIZATION
The assets for the game will have varying levels of customization. The five bushes and nine rocks
have a small level of customization; they can be scaled uniformly to be small or large, giving
variation to the landscape. The trees in the world have a high level of customization. Each of the
four tree types have their own set of customization rules. Each Leaf then has a custom placement,
scale, and rotation based on which tree it is paired with. An example of one of the tree rules can
be found in Appendix E.

13

Figure 19: Art Style Influences

5.6 ART STYLE INFLUENCES
The geometry of the world is heavily inspired from Cubism. There are three aspects of Cubism that
inspired the visual style of Another End, the grittiness, the colours, and the multiple perspectives.
Some modern day examples of inspiration came from video games such as Kentucky Route Zero [5]
and Eidolon [6], and the interactive film “Rome” [7]. Another large influence for the style is the
music video for the song “Delta” by C2C [8]. Their use of mixing of gradients, flat colours, and
simple noise inspired the sharp edged objects with vertex colouring in Another End.

The colour palettes for each glyph and the biomes of the world were influenced by the colours seen
in the game No Man’s Sky [9], an upcoming video game. Eidolon, mentioned above, is an example
of how a lack of environmental movement makes the game appear flat and lifeless. Eidolon has an
extremely flat style, with no movement, and few textures or gradients [6]. This reverse inspired the
style by being the opposite of the desired look. Figure 19 has examples of art influences.

VISUAL DESIGN

6 SOUND DESIGN
Another End will makes of a variety of music and sound effects. Music was produced by Daniel
Campoli, a student in the music department at Carleton University. Consistent communication and
feedback was given to Daniel to ensure the created music suited the atmosphere of the game.

Created music includes a theme roughly 25-45 seconds in length for each character, as well as
a short cue roughly 7-15 seconds for each character. The short cues are played when the player
completes a story node that increases the influence of that character. Additionally, two themes
unrelated to the characters were produced for the use of advertising and the title screen of the
game. In addition to music, sound effects were created for actions, characters, and objects in the
game.

NAME CATEGORY FILE NAME

Destroyer Cue Music cue_destroyer.mp3
Destroyer Theme Music theme_destroyer.mp3
Architect Cue Music cue_architect.mp3
Architect Theme Music theme_architect.mp3
Illusionist Cue Music cue_illusionist.mp3
Illusionist Theme Music theme_illusionist.mp3
Protector Cue Music cue_protector.mp3
Protector Theme Music theme_protector.mp3
Fireball SFX Power_Fireball.mp3
Void SFX Power_Void.mp3
Annihilation SFX Power_Annihilation.mp3
Black Hole SFX Power_BlackHole.mp3
Grow SFX Power_Grow.mp3
Duplicate SFX Power_Duplicate.mp3
Fertilize SFX Power_Fertilize.mp3
Consolidate SFX Power_Consolodate.mp3
Morph SFX Power_Morph.mp3
Pull SFX Power_Pull.mp3
Warp SFX Power_Warp.mp3
Multi-Morph SFX Power_MultiMorph.mp3
Rebuild SFX Power_Rebuild.mp3
Shield SFX Power_Shield.mp3

14

Rejuvenate SFX Power_Rejuvenate.mp3
Shield Army SFX Power_ShieldArmy.mp3
Falling Powers SFX Power_Falling.mp3
Shooting Power SFX powershoot.mp3
No Impact SFX power_miss.mp3
Menu Click SFX menu_click.mp3

15

Table 4: Sounds in Game

SOUND DESIGN

7 REFERENCES
[1] C. Crawford, On Interactive Storytelling, 2nd ed. New Riders, 2012.

[2] J. Newman, Leap Motion reveals bid to become Oculus Rift’s head-
mounted VR controller. PC World, [online] 2014.
	http://www.pcworld.com/article/2600203/leap-motion-reveals-bid-to-become-oculus-rifts-
head-mounted-vr-controller.html

[3] Features - Three.js. GitHub, 2012, [online]
	 http://github.com/mrdoob/three.js/wiki/Features

[4] ElasticSearch, What is ElasticSearch?, 2014, [online]
	 http://www.elasticsearch.org/overview/elasticsearch

[5] Cardboard Computer, Kentucky Route Zero. [Video Game] 2013.
	 http://kentuckyroutezero.com/

[6] Ice Water Games, Eidolon. 2014. [Video Game]
	 http://www.icewatergames.com/about

[7] C. Milk, Rome - 3 Dreams of Black. [Interactive Film] 2011.
	 http://www.ro.me/

[8] C2C, Delta. [Music Video] 2013.
	 https://www.youtube.com/watch?v=PZbkF-15ObM

[9] Hello Games, No Man’s Sky. [Video Game] 2014.
	 http://www.no-mans-sky.com/

[10] Ubisoft, Child of Light. [Video Game] 2014.
	 http://childoflight.ubi.com/col/en-CA/home/index.aspx

APPENDIX A: LORE / STORY INFLUENCES
CULTURES CHOSEN:
North American / Aboriginal: For the characteristics of the glyphs.
Aztec: For the creation story of the game world.

INFLUENCES:

ILLUSIONIST:

	 http://www.native-languages.org/northwest-raven.htm
	 http://www.native-languages.org/legends-raven.htm
	 http://spirit-animals.com/raven/

	 Influence:
Trickery is influenced by the Native American raven. The raven has a great amount of power
and the potential for good. Unfortunately he is irresponsible and enjoys playing tricks. The
raven has performed great acts of heroism but can not be trusted due to his characteristics
of greed, gluttony, and impatience. Is able to create at will and is able to bend space and
time.

PROTECTOR:

	 http://www.universeofsymbolism.com/turtle-symbolism.html
	 http://www.native-languages.org/legends-turtle.htm
	 http://www.whats-your-sign.com/animal-symbolism-turtle.html

	 Legend:
Protector is influenced by the Native American turtle. The turtle is said to of helped create
the world by transporting land mass on its back as he swam across the oceans. The turtle
is also a great protector and will defend itself from foe be retreating into its shell. Turtle
has tons of patience and is therefore never in a hurry. He will take his time while doing
tasks. Is often known to have the wisest soul.

DESTROYER:

	 http://www.native-languages.org/loks.htm
	 http://www.native-languages.org/lusifee.htm
	 www.whats-your-sign.com/symbolic-wolverine-meaning.html

	 Influence:
The influence of Chaos comes from the Native American wolverine. The wolverine is often
thought of as a deadly monster with the ability to steal a persons soul. Has a translation of
“Indian-Devil”. Wolverine has an unprecedented amount of raw power but its power may be
unpredictable.

ARCHITECT:

	 www.universeofsymbolism.com/symbolic-spider-meaning.html
	 http://www.whats-your-sign.com/spider-symbol-meaning.html
	 http://www.spiritanimal.info/spider-spirit-animal/

www.shamanicjourney.com/article/6017/spider-power-animal-symbol-of-creation-weaving-our-
realities-infinity-balance-past-present-and-future

	 Influence:
The Architect is influenced by the Native American spider. The spider is extremely creative
and can manifest magnificent designs. The spiders web has limitless potential of what it can
be woven in to. Spider also has patience as it knows that a beautiful design must not be
rushed. With a body shaped like an eight and with eight legs, symbolism for infinity is all
around the Spider.

LORE:

	 Many, many, moons and suns ago there was nothing in the world but entity. The
all powerful being with the capability to create worlds. Entity became bored with the world
of nothingness and decided that it would build itself a home. With it’s powers entity built a
magnificent tower that rose hundreds of feet high. Entity then placed itself at the peak of the
tower.

Entity was pleased with its work, but as it looked out beyond its tower into the world of
nothingness it realized that there was more to be created. With such a large world to create, Entity
gave life to four legendary glyphs in order to help create the world. Trickery, Protector, Destroyer,
and Architect were born. Entity divided its power and gave part of it to each of the four glyphs.
The glyphs were sent off to build the world that Entity had dreamed of.

The four legendary glyphs worked tirelessly creating a magnificent world. A world so beautiful that
words can not define its beauty. However, one glyphs began to feel excluded and eventually grew
angry at the other three glyphs and Entity.
	
Destroyer approached Entity and spoke. “Trickery is creating and manipulating time and space itself,
Architect is creating magnificent designs and bringing them to life, and Protector nourishes these
creations to insure their prosperity.”

“As was intended”

“What am I to do with only the power to destroy”

“You will wait. If the world is to stay in perfect balance all things that come into existence they
must also leave.”

Destroyer did as told, and waited and waited. Many days went by but yet the world had nothing
to be removed. Then one day Destroyer could no longer remain patient and set fire to a forest.
Protector became angry at Destroyer for destroying a forest that he was assigned to protect.
Architect then grew angry at Protector for not protecting a forest that he promised to protect.

Protector and Architect then asked Trickery if he could transform the burnt forest back to life.
Trickery thought that he would be funny and brought all the trees back but as stone.

As time passed more events arose that caused conflict. Eventually all four of the legendary glyphs
grew angry at each other and went off in their own directions to create a world of their own. The
glyphs each created a tower in their own part of the world to exclude themselves from the others
and entity. The glyphs then hid in their towers, locking away their powers given by Entity.

Years went by without the glyphs leaving their towers. The magnificent world that was created
began to rot away until all that was left was the four towers belonging to the beings, and the one
tower belonging to Entity.

As Entity had given most of its powers to the four glyphs, it no longer had the ability to create
and repair the world. In a last attempt to recreate the world of its dreams, Entity created a being
with the last of its power. This being was was capable of using all of the powers given to the
original four glyphs. The new being could create change like Trickery, create new life like Architect,
protect all of creations like Protector, and destroy any obstacle like Destroyer. Lastly, Entity created
a suit of armor to be worn by the new being. The armor allowed for constant communication with

Entity and provided protection. The new being was then sent to reconnect the four original glyphs
and rebuild the new world.

This is where the players journey begins

Glyph Colour Description / Goal Interaction / Objective

Entity White Strives to bring
balance to the other
Glyphs (all bars are
flattened and equal)

Architect Green Strives to create Create, Influence Weather, Alter Terrain
Positively

Destroyer Red Strives to destroy Destroy, Fire, Alter Terrain Negatively
Protector Purple Strives to gain

knowledge and
preserve that which
already is

Research landmarks and ruins, Upgrading
objects, Build guardian / shield tower,
Reveal Trickster tricks (at high levels
without research)

Illusionist Orange Strives to falsify
information / change
the truth to suit it

Create “copies” of objects that aren’t real,
Falsify research information, Change nature
of objects for the trickster, Alter events
already in progress ie. change rain storm to
a fire storm

APPENDIX B: GAMEPLAY POWERS
Glyph Power Enum Description Fancy Description

Destroyer

Fireball d1_fireball Damage one
object

Fireball is the basic
attack for the
destroyer. This
power damages
objects and ruins in
the world.

Void d2_void Remove one
object

Void will completely
remove objects from
the world. Voids
effects cannot be
reversed.

Annihilation d3_annihilation Destroy all
objects in a radius

Annihilation rains fire
from the sky and
damages anything it
touches.

Black Hole d4_blackhole Remove all
objects in a radius

Create a small but
powerful black hole
which sucks in all
objects, removing
them forever.

Architect

Grow a1_grow Scale up an
object

Grow will make
objects larger within
the world. This
applies to vegetation,
ruins, and rocks.

Duplicate a2_duplicate Sample an object
and create a
duplicate

Choose an object to
duplicate and then
place copies of it
around the world.

Fertilize a3_fertilize Scale up many
objects in a radius

Creates fertilizing
rain that falls from
the sky and grows
anything that it
touches.

Consolidate a4_consolidate Suck up nearby
objects and
create a mega
object

The targeted object
absorbs all objects
around it, using
their energy to grow
enormous.

Protector

Rebuild p1_rebuild Undamage an
object

This power
rejuvenates damaged
objects.

Shield p2_shield Shield. Shield will prevent
the target object
from being harmed
or affected by other
powers for a short
period of time.

Rejuvenate p3_rejuvenate Undamage objects
in a radius

Restores life to all
damaged objects
around you.

Shield Army p4_shieldarmy Shield objects in a
radius

Shield Army will
protects all objects
that are near from
other powers for a
period of time.

Illusionist

Morph i1_morph Change an object
to a random other
object

Morph changes the
targeted object into
antoher.

Pull i2_pull Move an object
towards you

Pull allows for the
relocation of an
object by pulling it
towards you.

Warp i3_warp Teleport to where
the power lands

Warp to the target
location.

Multi-Morph i4_multimorph Change objects
in a radius to
random other
objects

Morph all objects in
an area around you,
changing their shape

APPENDIX C: ANOTHER END ENVIRONMENT
TREE

ROCK

LEAF

BUSH

APPENDIX D: COLOUR PALETTES
DESTROYER

PROTECTOR

ILLUSIONIST

ARCHITECT

ENTITY

RED

ORANGE

YELLOW

GREEN

BLUE

PURPLE

APPENDIX E: TREE CUSTOMIZATION EXAMPLE
Below is an example of the customization rules for one of the trees in Another End. For all tree
customization rules visit: http://anotherend.com/wiki/index.php/Asset_Format

Note: Colours of tree and leaves are not final.

TRUNK
•	 Has 5 trunks, can use 3-5 of them
•	 All trunks must appear within a 1x1 meter square on the ground
•	 Each trunk can be rotated between 0-360 degrees around the Y axis

NOTE: if they appear all in the same spot they would be pointing in different directions, meaning
they could all have a rotation of 0 and wouldn’t look weird (although tested pointing them in all the
same direction and didn’t look bad either)

LEAVES
•	 Leaves 1,2

•	 Scale: 0.5-2.0 (all)
•	 Rotation: 0-360 only in Y axis
•	 Translation: should be placed above branches

•	 Leaves 3,4
•	 Scale: 1.0-2.0 (all)
•	 Rotation: 0-360 any or all axis
•	 Translation: translated at least 4 units up (Y) randomly placed (X,Z)

•	 Leaves 5,6
•	 Scale: one large leaf scaled at 6 in center of tree, can be more scaled at 1 outer

area of branches
•	 Rotation: 0-360 any or all axis
•	 Translation: one large leaf translated up 4 units(Y), others randomly placed outside

of that
•	 Leaf 7

•	 Not used for this tree
•	 leaves 8,9,10
•	 Scale: 1.0-2.0 (all)
•	 Rotation: 0-360 any or all axis
•	 Translation: placed randomly in branches (X,Z) and at least 4 units up (Y)

